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1 Introduction

This progress report describes the current (October 2003) status of the subtitle generator
that is being developed in the ATraNoS project!. The generator provides summaries of
individual sentences which will be supplied by a speech recognition system. The summarized
sentences will be used as tv subtitles for hearing-impaired people. This report describes
follow-up work on the report ”A Baseline Subtitle Generator” (Tjong Kim Sang, 2003).
The main target of the current work is to find out in what way linguistic annotation of the
input sentences can aid the quality of the summarization process.

In section 2, we will start with an overview of the errors of the baseline system and show
what syntactic information will be valuable for summarizing. After this we will describe
the corpus we will use and the machine learning methods which will be used for extracting
the desired information from the corpus. The third section contains an overview of the
experiments we have performed in order to obtain syntactic information. In section 4 we
compare the performances of the baseline subtitle generator with the one that has access
to linguistic information. Section 5 contains concluding remarks and suggestions for future
work.

2 Baseline Systems

In (Tjong Kim Sang, 2003), we describe two baseline systems for summarization: one based
on machine learning and one that used hand-crafted deletion rules. Both systems used words
and some syntactic information (word classes) although it must be said that the quality of
the latter was not very high. The main problem for the learning approach was that the
system that obtained an optimal accuracy in predicting deleted and replaced words did not
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generate syntactically correct sentences. The basic rules of the rule-based summarizer failed
often when either the quality or the quantity of the annotation of the data was insufficient.
We believe that the availability of extra relevant linguistic annotation will diminish both
problems.

Here is an incomplete overview of the errors made by the two baseline systems (square
brackets denote deleted words):

Welkom bij [ het zeven uurjournaal | (learning approach)

The system removes a noun phrase (NP, het zeven uurjournaal) from preposition phrase
(PP, by het zeven uurjournaal) and leaves an incomplete phrase. It would probably have
helped if the system had access to PP information but this was not available. The baseline
system had access to word class information (part-of-speech tags) and information about
noun phrases. An improved system should have access to information about other phrase

types.

[ Yasser Arafat ] roept (learning approach)

In this case the system removes the subject of a sentence. Information about subjects and
objects was not available to the baseline systems and this should be added.

roept [ op de aanslagen | te stoppen (rule-based approach)

One of the deletion rules in the rule-based system states that all prepositional phrases can
be removed. The phrase op de aanslagen is identified as a prepositional phrase because it
consists of a preposition followed by a determiner and a noun. However, in this case op is
not a preposition but a verb particle. It belongs with the verb roept en therefore it should
not be deleted. This information is not available in the part-of-speech tagging scheme we
used. It should be available as extra syntactic information.

[ Al | Qaeda (rule-based approach)

Another deletion rule in the rule-based system specifies that in a sequence of names, all
but the last can be removed. This rules works fine for person names that consists of two
words but it will fail for names of other types which cannot be reduced. In order to take
care of this problem the summarization systems need to have access to more elaborate
name information. They need to know what type of name they deal with (person name or
something else) and within the person names they need to know the difference between first
names and surnames.

In (Tjong Kim Sang, 2003), we have shown that the quality of the available syntactic
information is very important. Errors in for example word class information will have a
negative influence on the summarization results. It speaks for itself that we prefer extra
syntactic information that is of good quality.
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ik ook daar ga ik van uit

Figure 1: Example of a syntactically annotated tree in the Spoken Dutch Corpus.

3 Data and Methods

We will annotate data with machine learning methods trained on syntactically annotated
corpora. This section contains a description of these learning algorithms and the data which
we will use for training them

3.1 Corpora

In order to analyze text with machine learning we need annotated training examples. At
this moment there are two syntactically annotated corpora for Dutch available: the Spoken
Dutch Corpus? and the Alpino Treebank?

The Spoken Dutch Project (CGN) develops a 10-million-word corpus of spoken Dutch.
All words in the corpus will receive a lemma and a part of speech tag and about 10% of
the sentences will be annotated syntactically with parse trees. The current version of the
corpus (release 6) contains about six million tokens of which about half a million tokens
have received a full syntactic annotation.

An example parse tree can be found in Figure 1. The CGN material contains information
which is relevant for solving three of the summarization problems mentioned in the previous
section. First, the syntactic trees defines phrases of different types, like for example the

*http://lands.let.kun.nl/cgn/
3http://www.let.rug.nl/~“vannoord/trees/
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Chevrolet brengt voor 1970 een nieuw model uit

Figure 2: Example of a syntactically annotated tree in the Alpino Dependency Treebank.

prepositional phrase daar van in the example sentence. They also contain information
about verbs and their subjects (ik in the example sentence). Finally, the trees tie isolated
particles to the corresponding verbs, like uit to ga in the example sentence. The corpus
contains information about proper names as well but no distinction is being made between
different types of proper names.

The syntactic annotation contains two features which may complicate future usage. First,
the trees contain crossing brackets. This means that phrases are discontinuous and this will
make an automatic identification of phrases difficult. However, due to the nature of Dutch,
crossing brackets in the trees are difficult to avoid. Problems in the phrase identification
may also be caused by the fact that the depth of the trees is small. For example, one could
have expected the subject of the example sentence ik to be marked up as a noun phrase and
ga uit as a verb phrase. However, both levels are missing and the three words have been
put immediately under the sentence node. It remains to be seen whether these choices can
be generated by an algorithm.

The Alpino Dependency Treebank consists of sentences of the newspaper part of the Eind-
hoven corpus. The present release contains about 7000 sentences with about 140,000 tokens.
The annotation format is quite similar to that in CGN although the part-of-speech features
have received a less elaborate annotation. An example sentence of this corpus can be found
in Figure 2. The annotated trees contain the same useful features as in CGN: explicit an-
notation of phrases, subjects and verb particles. However, they also lack useful annotation
of phrases that only contain one word, like Chevrolet in the example sentence which has not
been marked up as a noun phrase.

We have chosen the CGN data for generating syntactic models for Dutch because there
is more CGN material available than is present in the Alpino treebank. The data has
been divided in two sections: material that has received full syntactic annotation (461,409



tokens) and material that contains part-of-speech information (5,983,309 tokens). Each
of these sections has been divided in three parts: one for training, one for evaluating the
learning approaches during the parameter tuning process (development data) and one extra
held-out test set. More information on these data sets can be found in the sections on
part-of-speech tagging and chunking.

3.2 Learning algorithms

We will use memory-based learning (Daelemans et al., 2002b) for building syntactic models
from the corpora. A memory-based learner stores all training data. Each test item is
compared with the training data and the output class is chosen of the training item which
is most similar to the test item. There are different ways to store the training data and
compare the distances between items. We use a nearest-neighbor algorithm (1B1) with
the gain ratio variant of information gain weighting of features combined with the overlap
distance metric (see (Daelemans et al., 2002b) for background information). Unless specified
otherwise we only look at the training item that is closest to the test item under investigation
(that is, we do not perform smoothing).

The software environment which we have used for our experiments is the memory-based
tagger MBT developed in Tilburg, The Netherlands (Daelemans et al., 2002a). It is a shell
built on a general memory-based learner. The extra features of MBT, like standard inclusion
of orthographic features and separate treatment of frequent, infrequent and unknown words,
allow the user the quickly develop, test and use a good memory-based classifier. The system
has one disadvantage: it can only process information of a single source, for example only
words from only part-of-speech tags but not both at the same time. This means that
theoretically its optimal performance is inferior to that of a general memory-based learner
which can combine information from different sources. However, in our earlier work with
named-entity recognition we have found it hard to use a general learner to improve on
results obtained with MBT.

MBT allows the user to specify different parameters. Generally we have kept the default
parameters of the general underlying learner and changed only the MBT-specific parameters:

e a number of words (parameter w) before and after the focus word (both for known
and unknown words),

e a number of output classes to the left (d) and a number of sets of possible output
classes to the right (a) of the focus word (both for known and unknown words),

e a number prefix characters (p) and a number of suffix characters (s) of the focus word
(unknown words only),

e the presence of the current word (W) and its set of output classes (f, known words
only), and

e the presence of capitalized characters (c), hyphens (h) and numeric characters (n) in
the focus word (unknown words only).



The single characters between brackets in this list are the names of the parameters*. In total
the parameters contain ten integer values and five binary values. We have always included
the the set of output classes of the focus word for known words. For the remaining fourteen
features we have searched for the optimal set with bidirectional hill climbing (Caruana
and Freitag, 1994) starting from a set of zero-values. This means that we have progressed
through the 14-dimensional feature space by performing an experiment for each feature set
that differs in one position (+1 or —1) from the point under investigation and choosing the
best performing set as the next point to examine. This procedure was halted when the
performance of the current point was not improved by one of its neighbors.

In order to check if our results are reasonable, we have also applied a second tagger to the
data sets: the Hidden Markov Model tagger TnT (Brants, 2000). This tagger has achieved
state-of-the-art results for part-of-speech tagging. Tn'T is both fast and accurate but it does
not allow elaborate parameter tuning. We are using it as a comparison method only. Even
if this tagger would perform well, it is uncertain whether its license allows future application
by the commercial project partners.

4 Experiments

In this section we will describe the experiments which we have performed for building syn-
tactic analyzers for Dutch text. We will discuss four components: a part-of-speech tagger,
a lemma finder, a text chunker and a relation finder. We will also mention the development
of three other modules which will be useful for summarization of spoken Dutch text: a
person name finder, a capitalization module and a module for punctuation insertion. We
will discuss the data used, the experiments performed, and the results that were achieved.

4.1 Part-of-speech tagging

The first task we have examined is part of speech tagging: assigning word classes to words.
We have used the CGN material as training and test data. CGN contains a rich tags set in
which most of the part-of-speech tags have different attributes. Here is an example sentence
from the corpus:

word/WW (pv,tgw,ev) je/ VNW (pers,pron,nomin,red,2v,ev) hier/VNW (aanw,adv-
pron,obl,vol,30,getal) nou/BW() wakker/ADJ(vrij,basis,zonder) van/VZ(fin) ?/LET()

An overview of the different tags that appear in the data set can be found in Table 1.
We have removed sentences in which the speaker was registered as comment, background
information or unknown. The remaining data has been divided in three parts: development

4An extra dummy parameter F is used for unknown words for keeping left and right context words apart,
as in wFw.



tags subtags | name

350,116 | 6% 35 ADJ
579,973 | 10% 2 BW
611,134 | 10% 1 LET
365,993 | 6% 10 LID
768,683 | 13% 20 N
175,035 | 3% 8 SPEC
369,581 | 6% 3 TSW

76,918 | 1% 15 ™
338,277 | 6% 3 VG
901,923 | 15% 187 VNW
524,455 | 9% 4 VZ
921,221 | 15% | 27 | WW

Table 1: Major category part-of-speech tags in the cleaned version of release 6 of the CGN
corpus (611,136 sentences, 5,983,309 tokens). The number of subtags shows how many
different sets of attributes appeared with each tag.

data (files of which the name ended with 01, 59,869 tokens), test data (files of which the
name ended with 69, 60,000 tokens) and training data (all other files, 5,863,440 tokens).
The development data and test data sets have been chosen in such a way that they contain
about 1% of all available material.

Because of the large number of tokens in the training data, running a single memory-based
learning experiment requires many hours. This makes it difficult to perform even small-
scale feature selection. Therefore we have searched for the best set of features for a subset
of the training data only. In our first experiments we started with the first 0.2 million
tokens of training data from zero features. We used MBT in combination with bidirectional
hill-climbing and searched for the set of features that obtained the highest accuracy. The
best set of features found was used as a starting point for a feature search with 0.5 million
tokens. Thus we found another best set which was used as a starting point for a series of
experiments with one million tokens. Finally, the best features found were applied to the
complete training data.

This approach did not work very well. We observed a constant improvement of the best
accuracy: 89.96%, 91,59%, 92.79% and 94.61%. However, most of the performance increase
was caused by the fact that each new set of experiments had access to more training data.
For example, the feature selection approach with 0.5 million words of training data started
with an accuracy of 91.46 for the best feature set. This means that the extra training data
has added 1.50% to the accuracy and the feature selection method only 0.13. When we look
at the performance of TnT on the complete training data, it becomes clear that the overall
performance (94.61%) should have been better: TnT obtains 96.85%.

In order to improve the performance of the memory-based learner we have checked a number
of different promising start locations in the feature space. We have evaluated the perfor-
mance with using one, two and three tags to the left and right of both known and unknown



method | known unknown accuracy | comments

baseline | - - 87.20%
TnT - - 95.08%
MBT | fW Fsss 88.33% | context 0
MBT | dfWa Fsss 93.33% | known, context 1
MBT | ddfWaa Fsss 93.22% | known, context 2
MBT | dddfWaaa | Fsss 93.12% | known, context 3
MBT | fW dF'sssa 88.59% | unknown, context 1
MBT | fW ddFsssaa 88.56% | unknown, context 2
MBT | fW dddFsssaaa | 88.53% | unknown, context 3
MBT | dfWa dF'sssa 93.59% | best start pair
MBT | dfWaw chssswdFw | 94.05% | feature selection

Table 2: Accuracies obtained for part-of-speech tagging on the development data with the
first million words of training data.

method | unique | ambiguous | unknown all

baseline | 98.59% 89.82% 22.46% | 90.10%
TnT 98.59% 96.82% 81.10% | 96.85%
MBT 98.62% 96.55% 71.24% | 96.52%

Table 3: Accuracies obtained for part-of-speech tagging on the development data with the
complete set of training data. 11% of the tokens in the test had a unique tag in the training
data, 88% contained more than one tag and 1% did not occur in the training data. Overall
results that are more than 0.12 apart are significantly different.

words for a training data set of one million tokens. A context of one tag proved to be the
best, both for known as for unknown words. After this we have started a feature selection
process from this feature set and applied the best feature set found to the complete data
set. The results can be found in Tables 2 and 3.

The baseline method outputs the most frequent tag of each word. Ties between two tags are
resolved by selecting the most frequent of the two in the complete training data. Unknown
words receive the most frequent tag of the least frequent words in the training data. Of the
seven context sizes we have checked, a context of one proved to be best for both known and
unknown words. We have used this as a starting point for a feature selection process which
improved the accuracy on the development data from 93.51% to 94.05%. We have applied
the best feature set to the complete training set. The results can be found in Table 3. Both
TnT and MBT perform better than the baseline. TnT performs significantly better than
MBT but the absolute difference is small.

Apart from the experiments described in Table 2, we have also evaluated some of the param-
eters of the basic memory-based learner. Examining a larger neighborhood (parameter k)
resulted in better performances with one million words of training data (accuracy 94.42%)
but this requires large feature sets which are impractical to use with all training data.
We have evaluated an alternative memory-based algorithm which is faster in classification



method training known | unknown | accuracy

baseline all - - 98.22%
TnT | 5,400k words - - 98.88%
MBT 200k words wdf sF 94.81%

MBT 500k words wf ssFaa 95.53%
MBT | 1,000k words | wifa ssssF 96.24%
MBT all wfa ssssF 98.51%

Table 4: Lemmatization results obtained on the development data.

(IGTREE). However this algorithm performed worse than 1B11G (accuracy 93.75%).

4.2 Lemmatization

Lemmatization involves finding the base form of a word. This task is usually applied to
dictionaries in which case a word can have more than one base form. We have applied the
task to running text and we assume that in that case words can have only one base form.
The base form depends on the characters in the word. Defining the task as a character
transformation task is quite complex and therefore we have defined it as a word tagging
task.

It is quite unlikely that a classifier will learn any generalizations in such a word-to-word
transformation task. Therefore we have defined the task as a word-to-pattern transforma-
tion task. The patterns define how the word needs to be changed in order to obtain the
base form. Example: toegekend receives pattern —-toege-d+toe+Len which means that the
base form can be obtained by removing toege from the start of the word and d from the end,
and then adding toe to the front of the word and appending the final character followed
by en. This produces the base form toekennen. We have defined 74 basic patterns. These
were combined with a list of 27 prepositions to create a total of about 17,000 patterns. We
have used the same segments of the CGN data as in the part-of-speech tagging experiment
as training, development and test data.

We have searched for the best MBT features in the same way as in our initial part-of-speech
tagging experiments: starting with small training data sets and increasing these step-by-
step. The results can be found in Table 45. The final performance is quite high (98.51%).
However, the small difference with the baseline and the score obtained by TnT® suggest
that there is room for improvement. The features used by the learner (only final characters,
no initial characters) indicates that it will have difficulties with processing unknown words
with an initial verb particle.

SProbably further work on lemmatization will boost performance but since the system performs well on
the task we need for summarization, finding base forms for frequent verbs, we have not devoted extra time
to it.

5TnT crashed when trained with the omplete data set (temporary lexicon entry (tags) overflow) and
therefore we have applied it to part of the training data only.



phrases tokens length | name
24,701 | 24,701 | 5% 1.0 | clause boundary (CLB)
5,674 | 13,066 | 3% 2.3 | multi-word unit (MWU)
123,109 | 169,605 | 37% | 1.4 | noun phrase (NP)
28,491 | 29,245 | 6% 1.0 | prepositional phrase (PP)
77,979 | 77,979 | 17% 1.0 | verb phrase (VP)
] 146,813 | 32% | - | none

Table 5: The five phrase types in the syntactically annotated part of release 6 of the CGN
corpus (51,416 sentences, 461,409 tokens).

4.3 Text chunking

Text chunking involves dividing sentences in base phrases containing syntactically related
words. For example, the sentence De bonden eisen meer duidelijkheid over Ford Genk . can
be divided as follows:

[NP De bonden NP] [VP eisen VP] [NP meer duidelijkheid NP] [PP over PP]
[MWU Ford Genk MWU] .

This sentence contains two noun phrases (NP), one verb phrase (VP), one prepositional
phrase (PP) and one multi-word unit (MWU). The punctuation sign is not part of a phrase.
No embedded phrases are allowed and therefore the prepositional phrase only contains a
preposition rather than a preposition and a noun phrase. We evaluate the output of text
chunkers by counting the number of completely correct phrases and dividing them by the
number of phrases found by the system (precision) and by the number of phrases in the
text (recall), and computing the harmonic mean of these two (Fg=1).

Building a text chunker from the syntactically annotated CGN material is not a simple task.
In section 3.1, we have shown that the annotation scheme is incomplete. Furthermore, the
presence of discontinuous phrases, made visible by crossing brackets in the syntactic trees,
complicates the task of the chunker. Indeed our first naive approach to this task: predict
the annotation level immediately above the part-of-speech tags, did not work well. At best
we obtained F3_;=74 while we have obtained F3_;=92 for English data (Tjong Kim Sang,
2002b). The precision of that chunker (74) was so low that it was unlikely that its output
would be of use to the summarizer.

In order to obtain useful annotation, we have simplified the task. Instead of attempting to
predict the 25 different syntactic tags which we found in CGN, we have restricted ourself
to three most frequent phrase types: noun phrases, verb phrases and prepositional phrases.
Some person names have been marked up as multi-word units and therefore we have included
these as well. It was relatively easy to extract words that marked the start of a relative
clause and therefore we included a phrase type for these words as well.
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method | data known | unknown | precision | recall | Fg—;
baseline | words - - 82.74% | 86.11% | 84.39

TnT words - - 87.72% | 89.59% | 88.64
MBT | words | wdfWaw | csswddFw | 89.68% | 90.35% | 90.01
baseline | POS - - 82.74% | 86.11% | 84.39
TnT POS - - 90.34% | 91.30% | 90.82
MBT POS | wdfWw wF 92.62% | 93.03% | 92.83

Table 6: The performance of MBT and TnT on the text chunking task. Fg—; scores that are
more that 0.30 apart are significantly different. The best performance is obtained with part-
of-speech tags as input. MBT performs well for verb phrases (Fg—;=96) but multi-word
units proved to be difficult (F3—;=46).

Because the syntactic annotation in CGN was incomplete for our task, we had to produce
some additional information. Nearly all pronouns have been put in noun phrases of their own
except for pronouns that marked the start of a relative clause. Nouns not already included
in noun phrases were put in a noun phrase of their own. All verbs and verb particles were
stored in verb phrases. Each separate tree was regarded as a separate sentence. We collected
51,416 sentences of syntactic annotated material which contained 461,409 tokens (see Table
5). This material was divided in three sections: development data (file names ending with
2, 45,533 tokens), test data (file names ending with 9, 46,853 tokens) and training data (all
other files, 369,023 tokens).

We have performed two feature selection experiments with this data. In the first, the learner
was presented with words and in the second with part-of-speech tags. Both the part-of-
speech tags of the training and development data were derived by the TnT tagger’. The
results of these experiments can be found in Table 6. MBT performs better with part-of-
speech tags as input than with words as input. For both input variants it outperformed
TaT in this task.

4.4 Relation finding

The CGN material contains useful relation information like subjects, head verbs, objects,
modifiers and complements. Automatically identifying these relations will be a hard task.
We have attempted to simplify the task by looking only for two types of phrases: head verbs
and subjects of main clauses and relative clauses. The example sentence of the previous
section will be annotated as:

[SU De bonden SU] [HD eisen HD] meer duidelijkheid over Ford Genk .

We worked with the same data sets as in the text chunking task. Only the subjects and
heads of phrases of the types SMAIN, SSUB, SV1 and PPRES have been used. The phrases

"At the time when this experiment was conducted MBT did not yet generate good part-of-speech tags.

11



phrases tokens length | name

52,672 | 52,734 | 11% | 1.0 | clause head (HD)

50,400 | 65,172 | 14% | 1.3 | clause subject (SU)
- 343,503 | 75% - none

Table 7: The two phrase types used in the relation finding task with release 6 of the CGN
corpus (51,416 sentences, 461,409 tokens).

method | data known unknown precision | recall | Fg—;
baseline | words - - 87.77% | 76.08% | 81.51
TnT words - - 87.64% | 85.88% | 86.75
MBT words | wddfWaa | chwddddFaw | 91.07% | 89.69% | 90.38
baseline | POS - - 89.16% | 88.29% | 88.72
TnT POS - - 88.78% | 88.20% | 88.49
MBT POS | wddfWaa pdFa 92.95% | 92.51% | 92.73
baseline | chunks - - 68.03% | 50.78% | 58.15
TnT | chunks - - 67.77% | 81.08% | 73.83
MBT | chunks wiw nF 77.78% | 83.08% | 80.34

Table 8: The performance of MBT and TnT on the relation finding task. The best perfor-
mance is obtained with part-of-speech tags as input. MBT does well in finding clause heads
(Fg=1=97) but retrieving clause subjects is more difficult (F3-;=88).

have been extracted from the corpus in a straight-forward way; there were no exceptional
cases. We have run three sets of feature selection experiments with different input types:
one with words, one with part-of-speech tags and one with text chunks. The part-of-speech
tags have been generated by TnT and the chunks by the best MBT text chunker described
in the previous section. The results of the experiments can be found in Table 8. MBT
outperformed TnT for all three input types. The best results were obtained with part-of-
speech tags as input.

4.5 Person name finding

Identifying person names in text is important for summarization because in the target text,
news wire text, first names can often be removed. In this task we have used the data
set of the Dutch named entity recognition task of CoNLL-2002 (Tjong Kim Sang, 2002a).
We have only used the person names tags of this data and removed the tags for locations,
organizations and miscellaneous entities. A complication with this data set is that all names
have been tagged as PERSON while we need to keep apart first names and surnames. We
have manually added the required information to the training data. The first 90% of the
data (182,796 tokens) was used as training data and the final 10% (20,135 tokens) as test
data.

It did not seem sensible to perform person name finding on part-of-speech tags or text

12



phrases tokens length | name
2,752 2,823 | 1% 1.0 | first names (FIRST)
4,285 4751 | 2% 1.1 | surnames (SUR)
- 195,357 | 97% - none

Table 9: The two phrase types used in the person name finding task in the data constructed
from the CoNLL-2002 shared task for Dutch named-entity extraction (16,093 sentences,
202,931 tokens).

method data known unknown | precision | recall | Fg—1
baseline words - - 79.25% | 36.92% | 50.37
TnT words - - 68.48% | 69.23% | 68.85
MBT words wdddfWa, cwddFaww | 76.03% | 69.01% | 72.35
baseline | words+list - - 69.85% | 80.44% | 74.77
TnT words+list - - 48.74% | 89.23% | 63.04
MBT | words+list | wdddddfaaww nF 83.75% | 88.35% | 85.99

Table 10: The performance of MBT and TnT on the person name finding task. The
best performance is obtained with words and a list of person names as training data.
MBT performed better on recognizing first names (Fg—;==89) than on identifying surnames

(Fp=1=83).

chunks and therefore we have only performed a feature selection process with words as
input. The results were not very good (Fg—1=72). This is probably caused by the small
number of positive training examples: Table 9 shows that we had only about 7,000 examples
of person names. In all the previous tasks we had tens of thousands or even hundreds of
thousands examples of the phrases we were looking for.

We have attempted to improve performance by creating extra training data. We applied the
person name finder to an unannotated corpus (material from the Belgian magazine Knack)
and selected sentences which contained phrases annotated as names which were not already
present in the training corpus. We manually checked and corrected the sentences and added
these to the training data. We stopped after adding about 40,000 tokens with about 4,000
positive phrases. By then performance had increased to Fg—_;=74. It seems that a lot more
data was needed in order to obtain reasonable results.

Our next improvement attempt consisted of adding a list of names to the training data.
Again we stumbled upon the problem that there was not distinction between first names and
surnames in the list. We have classified the names by guessing that a word is a first name
if it appears more often on the first position of a multi-word name than on any non-initial
position. This approach converted a list with 35,225 person names into one with 22,343
first names and 31,882 surnames. This list was added to the training data. As a result
performance improved to Fg—;=86. Probably it is possible to improve performance even
further but the current performance is good enough for aiding the summarization process.
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method | data known unknown precision | recall | Fg—;
baseline | words - - 69.20% | 8.29% | 14.80
TnT | words - - 55.83% | 15.17% | 23.86
MBT | words | wddfWaw | hpssssdddFaw | 52.96% | 32.39% | 40.20

Table 11: The performance of MBT and TnT on the punctuation task for CGN data.
Training data consisted of half a million words. MBT obtained Fg_; rates between 45 and
50 for periods and empty sentence endings but the performance for question marks and
ellipses was quite bad (Fg=; less than 6).

4.6 Capitalization and punctuation

At this moment we are working with text data. In order to be able to process speech data in
the future, we have looked at two additional prepossessing tasks which can aid an automatic
analysis of speech data. The first is capitalization: the task of finding out in whether a word
contains capital characters or not. This function is useful for name recognition as well. By
changing the initial character of a written sentence to lower case whenever appropriate, one
can reduce the number of errors made by a named-entity system.

The method we have applied for the capitalization task is an adapted version of the method
by Michael Collins mentioned in (Curran and Clark, 2003): find out how often a word
appears with capital characters and in lower case by examining a large corpus. This method
works quite well but it has problems with phrases like New York. Therefore we have collected
bigram information as well: a set of words which usually appear in lower case except when
they are preceded by or followed by another specific capitalized word. We use this method
for standardizing capitalization versions in the summarization experiments that will be
discussed in the next chapter. The capitalization method has not been evaluated yet.

Another task which we need to perform is punctuation insertion: finding out where sen-
tences start and end, what punctuation sign to insert at those places, and where to insert
commas and other sentence-internal punctuation signs. It is relatively easy to obtain train-
ing material for this task since it can be generated from any well-formatted text. For a
start, we have attempted to reproduce the CGN punctuation information. We have se-
lected about half a million words of CGN material as training data and about 50,000 tokens
as test material. All punctuation signs and sentence boundaries were removed from the
data. The task was to find back the sentence boundaries (8%) and insert a period (86%),
question mark (8%), ellipsis (5%) or nothing (1%). The performance of the learner was
measured with precision, recall and Fg—; rates.

We have performed one feature selection experiment with MBT. The results can be found
in Table 11. MBT is right in suggesting the position of a sentence break in about half of
the cases but it finds back less than a third of these places. Punctuation insertion proves to
be a difficult task. It seems that additional syntactic annotation could be helpful but in a
normal setup one would expect the punctuation process to precede the syntactic analysis.
Some extra work is required on this task.
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tokens name
18,084 | 20% | delete
3,967 | 4% | replace
70,824 | 76% | copy

Table 12: The three main token actions that are performed in the summarization process in
the selected part of the VRT news corpus (7,603 sentences, 83,238 tokens). The replacement
action specifies the replacing tokens as well (1,315 different tokens).

5 Using Syntactic Annotation

With the syntactic annotation tools described in the previous chapter, we have obtained
the measures to enrich the parallel Atranos subtitling corpus. In this chapter we will
describe our experiments with this syntactically annotated material. We will work with
the VRT corpus. The current corpus contains 431,190 tokens. Not all this material is
useful for extracting summarization information. Many subtitles are exact copies of their
corresponding autocue sentence. In some sentence pairs there have been so many changes
that it will be hard to find correspondences between the sentences.

We have selected the most interesting sentence pairs from the corpus. We have defined a
sentence pair as interesting when the two sentences are different but share at least half of
the words. The alignment between sentences has been manually checked but the correspon-
dences between words have been estimated by an algorithm and have not been checked. The
selection process produced 7,603 sentences from the January, February and March sections
of 2002. The small December 2001 section has been kept aside as future test material. The
words in the selected sentences have been converted to default case and all punctuation
signs have been removed. In total 92,875 tokens remained. All sentences in the corpus
received part-of-speech tags, lemmas, chunk tags, relation tags and person name tags. We
have kept the first 83,238 tokens as training material and used the remaining 9,637 tokens
(about 10%) as test material.

The summarization process has been defined as a tagging process. The summarizer can
perform three actions for each token: copy it, delete it or replace it (see Table 12). Inserted
tokens have been ignored. Here is an example sentence from the corpus:

de politici vinden de euro natuurlijk/DELETE een goeie/goede zaak

Two tokens need to be changed. The adverb natuurlijk needs to be deleted and the adjective
goeie needs to be replaced by goede. We evaluate the summarization process by counting the
total number of predicted deletions and replacements that have been predicted correctly
and dividing them by the total number of deletions and predictions that were predicted
(precision) and those that are present in the corpus (recall). We combine these measures
by computing the harmonic mean of the two (Fg—1).

We started with performing two MBT feature selection experiments: one with only words

15



method | data known unknown | comp.r. | precision | recall | Fg—;
baseline | words - - 96% 53.30% | 13.61% | 21.69
TnT words - - 96% 43.49% 8.99% | 14.90
MBT | words wwiWaa hnFaa 90% 44.80% | 24.26% | 31.47
baseline | POS - - 100% 64.94% | 2.22% | 4.29
TnT POS - - 100% 55.88% 1.69% 3.27
MBT POS | wwwwfWaaaaw Fww 85% 33.59% | 25.06% | 28.70
TiMBL all | w_g—wy1,lo,p_1-Pr1,npny1 | 86% 41.24% | 30.29% | 34.93
Rules all 51% 23.24% | 49.09% | 31.55

Table 13: The performance of MBT and TnT on the summarization task. The parameters
used by the TiMBL process are words (w), lemmas (1), part-of-speech tags (p) and person
name information (n). A subscript following a character indicates its position with respect
to the current token. The target overall word compression rate is 81%. F— rate differences
that are larger than 1.83 are significant.

as input and one with only part-of-speech tags. The results can be found in Table 13.
MBT with words as input performed better than with part-of-speech tags as input. The
overall performance is not very high. Especially the low precision is worrying: even with the
best features, more than half of the predicted deletions and insertions of MBT are wrong
according to the data. We have performed experiments which optimized precision rather
than Fg_;. These improved precision to just over 50% but as a size effect the recall dropped
under 10%.

After the MBT experiments we performed a feature selection experiment with the general
memory-based learning which is the base of this tagger: TiMBL. For each token, the system
had access to a window of three previous and three following tokens, lemmas, part-of-speech
tags, chunk tags, relation tags and person name information. After a feature selection
process which started from zero features, the system selected five word features, three part-
of-speech features, two person name features and a lemma feature. The relation and the
chunk features were not used. With the eleven features, TiIMBL obtained an Fg_; rate of
almost 35, which is about 3.5 points better than MBT (see Table 13).

We have compared the performance of the learning systems with a set of hand-crafted
deletion rules. The rules use information about the words, their lemmas, part-of-speech
tags, chunk tags and person name tags but not the relation information. The rule set
contains deletion rules for adjectives, adverbs, first names, prepositional phrases, phrases
between commas, phrases between brackets, relative clauses, numbers in certain positions
and time phrases. Currently there is no limit on the application of the rules which means
that they delete every word of which they assume that it can be deleted. Therefore the
compression rate of the rule set is higher than that of the learning systems.

The rules do not obtain a higher Fg—; rate than TiMBL. We can conclude that, measured
over Fg_; rates, the syntactic annotation has resulted in a significant improvement (from
31.47 to 35.93, with an improved word compression rate). However, it remains to be seen
whether the current performance of the summarizer is good enough to be used in a practical
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environment.

6 Concluding remarks and future work

We have presented four syntactic analysis tasks for Dutch (part-of-speech tagging, lemma-
tizing, text chunking and relation finding) and three additional analysis tasks (person name
finding, capitalization and punctuation insertion) which are useful for converting sentences
to summarized subtitles. Application of the syntactic information resulted in a signifi-
cant improvement of the learning summarizer. However, the current performance of the
summarizers is probably not good enough for them to be used in practice.

Although there is room for improvement in each of the syntactic modules, it seems that
there is not much extra to be gained in summarization performance by improving the first
three of them. An additional summarization performance boost can probably obtained
by more elaborate relation finding and an extra module for identifying verb particles. The
initial versions of capitalization and punctuation modules need some further development as
well. An important feature which needs to be added to both summarizers is an opportunity
for the user to select different compression rates. We expect that this option will improve
the quality of the summarizations as well.

Automatic evaluation of the summarization processes remains a problem. We suggest to
combine three measures: Fg_; rates for deletions and replacements, character compression
rate (both overall totals as percentage of successful sentences) and a basic grammatical
analysis which checks for grammatical errors which are observed frequently in summarized
sentences. The implementation of this evaluation scheme should be one of the main tasks
in the next project year.
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A Examples

This section contains some example output texts of the current versions of the summarizers.
The example text has been taken from the start of the VRT 19:00 news broadcast of Sunday
December 16, 2001. It is neither part of the training data nor of the development data of
the memory-based summarizer. Here is the output of the TiMBL summarizer for this text
with deletions enclosed in square brackets and replacements and movements underlined:

e welkom bij het zevenuurjournaal(zeven uurjournaal) .

e in Afghanistan veroveren anti-Talibantroepen de tunnels van Tora Bora , maar van [
Osama | Bin Laden is geen spoor .

e [ Yasser | Arafat roept de Palestijnse extremisten op | de | aanslagen tegen Israél te
stoppen .

e [en ] de Belgen grijpen naast de medailles op de Europese zwemkampioenschappen
in Antwerpen .
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e in Afghanistan hebben anti-Talibanstrijders de tunnels en grotten van Tora de VS(Bora)
veroverd , het laatste bolwerk van terroristenleider [ Osama | bin Laden .

e vanmiddag kwam één van de commandanten van de [ alliantie | [ terug | van het front
, met goed nieuws en slecht nieuws .

e het goede was : Tora Bora is gevallen en Al Qaeda is verslagen .

TiMBL generates a perfect summary for the first sentence: two words are combined into a
compound. The sentence is the first of every news broadcast and thus the summary could
be found in the training data. The next four deletions are correct: two first names, an
article preceding a plural noun and a sentence-initial conjunction. Replacing the unknown
word Bora by de VS is obviously incorrect. The deleted first name and the adverb are both
correct but removing the noun alliantie results in an ungrammatical sentence.

Here is the output of the rule-based summarizer:

e welkom [ bij het zeven uurjournaal | .

e [ in Afghanistan | Anti-Talibantroepen veroveren de tunnels [ van Tora Bora | [ [,
maar [ van [ Osama ] bin Laden ] is geen spoor | | .

e [ Yasser | Arafat roept de [ Palestijnse | extremisten [ op de aanslagen ] [ tegen Israél
] te stoppen .

e En de Belgen grijpen [ naast de medailles | [ op de [ Europese | zwemkampioenschappen
] [ in Antwerpen | .

e [ in Afghanistan | Anti-Talibanstrijders hebben de tunnels [ en grotten ] [ van Tora
Bora | veroverd [ , het laatste bolwerk | van terroristenleider | [ Osama | bin Laden | .

e [vanmiddag ] én [ van de commandanten | [ van de Alliantie | kwam [ terug | [ van
het front | [, [ met goed nieuws ] en [ slecht | nieuws | .

e Het goede was : Tora Bora is gevallen en [ Al | Qaeda is verslagen .

The first two sentences are fine although not much is left of the original sentences. In
the second sentence the subject of the sentence is moved to the sentence-initial position, a
feature of the rule-based approach that is not present in the learning approach yet. The
third sentence contains a familiar error: op is classified as a preposition rather than a
verb particle. Probably this is a problem which can be solved but it requires detailed
information about the different Dutch verbs. Sentence four contains another problem with
an obligatory verb particle: naast. The next sentence is to short: the multiword unit één
van de should probably not have been split and terug should not have been removed (part-
of-speech tagging error?). The final sentence has a problem with the word Al which is a
frequent adverb in Dutch. It is mistagged and removed, which should not have happened.

The rule-based summarizer is available for testing at http://cnts.uia.ac.be/cgi-bin/atranos
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