Chapter 1

Introduction

The subject of this work is a novel system for tagging named entities in text
called “MENE” | an acronym which stands for “Maximum Entropy Named Entity”.
This chapter will describe the problem of named entity recognition, discuss its
importance, and look at how named entity systems are currently being evaluated.

1.1 Information Extraction

Named entity recognition (which might also be called “proper name classification”)
is a computational linguistics task in which we seek to classify every word in a doc-
ument as falling into one of eight categories: person, location, organization, date,
time, percentage, monetary value, and “none-of-the-above”. In the taxonomy of
computational linguistics tasks, it falls under the domain of “information extrac-
tion”. Information extraction is the task of extracting specific kinds of information
from documents as opposed to the more general task of “document understanding”
which seeks to extract all of the information found in a document.

There are many levels of sophistication which one can attempt in information
extraction. The most ambitious task currently being widely attempted is “scenario
template” extraction. In this task, we seek to retrieve a wide variety of information
about a certain type of event from a document. For instance, at the recent “Seventh
Message Understanding Conference” (MUC-T7) [32], the specific scenario-template
task was to identify missile and rocket launch events in 100 articles from the New
York Times. Participants in this task were asked to fill in as many slots as possible
in a database template to answer questions such as:

e Where was the rocket launched from?
e Who owned the rocket?

e Who owned the payload?

e What was the payload?

A simpler information extraction task is that of “template relationships”. Here
the task is to find the relationship between pairs of named entities. For instance,
from the phrase “Microsoft president Bill Gates”, we would want the system to
report that “Bill Gates” is a person, “Microsoft” is an organization, and that Bill
Gates is an employee of Microsoft.

1.2 Named Entity Recognition

Named entity recognition, which is the subject of this thesis, is much simpler than
either of these tasks, but it is a necessary precursor to them. Clearly before we
can determine the relationship between Microsoft and Bill Gates, we must first
properly categorize them respectively as an organization and a person. Similarly,
Cape Kennedy must first be identified as a location before we can identify it as a
rocket’s launching site.

Since the named entity task is relatively simple, a relatively high accuracy rate
is expected of N.E. systems. While it is, indeed, fairly easy to build a named entity
(N.E.) system which has reasonable performance, there are still a large number of
ambiguous cases which make it difficult to attain human performance levels on the
task. For instance:

e When is the word “Washington” being used as the name of a person and
when as the name of a city?

e “Mr. Jones lost 25 pounds ...” Did he lose 25 pounds of weight or 25 pounds
of British currency?

An example may prove helpful here. Given the paragraph:

Italy’s business world was rocked by the announcement last Thurs-
day that Mr. Verdi would leave his job as vice-president of Music
Masters of Milan, Inc. to become operations director of Arthur Ander-
sen.

we want to reproduce the paragraph with all of the named entities marked with
SGML tags as follows:

(ENAMEX TYPE=“LOCATION”)Italy(/ENAMEX)’s business world was rocked
by the announcement (TIMEX TYPE=“DATE”)last Thursday(/TIMEX) that
Mr. (ENAMEX TYPE=“PERSON”)Verdi(/ENAMEX) would leave his job as

2

vice-president of (ENAMEX TYPE=“ORGANIZATION”)Music Masters of Mi-
lan, Inc.(/ENAMEX) to become operations director of (ENAMEX TYPE = “OR-
GANIZATION”)Arthur Andersen(/ENAMEX).

Note a few difficult cases in this paragraph:

“Italy” is at the beginning of a sentence, so capitalization information is
useless.

The “’s” is not part of the name “Italy”
The date is “last Thursday” rather than “Thursday”
“Milan” is tagged as a part of an organization name rather than as a location

“Arthur Andersen” is an organization, not a person

These cases suggest some more general questions of robustness and portability
which this thesis will attempt to addresss, such as:

How can a system recognize names when they appear in headlines or at
the beginning of sentences and capitalization information is consequently
missing?

Does a system have to be rewritten whenever there is a shift in domain or
language?

What happens if the rules are changed a little bit? For instance, according
to the rules of the MUC-7 evaluation under which we tested our system
the word “Ford” in “Ford Taurus” would not be tagged as an organization
because it is seen as being part of a product name. However, another user
might want this tagged as a reference to the company.

1.3 Applications of Named Entity Recognition

There has been a considerable amount of work on named entity taggers in recent
years which aims to address many of these ambiguity and portability issues and
at least one company has been built around providing a solution for this problem
(IsoQuest, Inc.) [29]. This interest has been largely motivated by the relative
tractibility of the problem and the potential marketability of an accurate named
entity system. This marketability is driven by the many obvious benefits of having
an accurate named entity system, including:

e More accurate internet search engines. One could find references to Clin-
ton, South Carolina, without wading through pages of information about
President Clinton, for instance.

e General document organization. A user can call up all documents on a
company intranet which mention a particular individual.

e Before reading an article a user could see a list of the people, places, and
companies mentioned in the document.

e Automatic indexing of books. For many books, the majority of the items
which would go in the index would be named entities.

e People Magazine could use this to highlight the names of every person men-
tioned in bold. The Wall Street Journal could do the same with companies.

e A named entity tagger can serve as a preprocessing step to simplify tasks
such as machine translation.

e As mentioned earlier, an N.E. tagger is an essential component of more com-
plex information extraction tasks.

1.4 Evaluating Named Entity Systems

Recent progress in English N.E. has been greatly facilitated by the MUC-6 and
MUC-7 machine understanding conferences. These conferences, organized by the
Defense Advanced Research Projects Agency (DARPA) have as their primary pur-
pose the evaluation of information extraction systems in a carefully controlled test
followed by a conference in which participants present papers discussing their meth-
ods.

In Japanese, the “Multilingual Entity Task” (MET-2) followed the same basic
format as the MUC evaluations for Japanese named entity identifications, making
use of the same domains and with results being presented at the same conference.
The “Information Retreival Exercise” (IREX) is a similar Japanese-language task.
The evaluation was held on May 13, 1999 with a conference to be held August 30
- September 3, 1999 in Tokyo.

NYU’s “Proteus” project entered the MENE system in the MUC-7 named
entity evaluation [9], where it was evaluated against systems from 11 other insti-
tutions. We also entered a Japanese-language version of the system in the IREX
evaluation and tested it against data from the MET-2 evaluation. Since these
evaluations served as our primary test of the system’s effectiveness, it is important

that we describe them in detail. We will discuss the MUC-7 evaluation here and
will discuss details of the MET-2 and IREX evaluations in chapter 8.
MUC-7 was a carefully controlled test consisting of four stages.

1. Training data was distributed to the participants consisting of 100 articles on
the subject of aviation disasters. These articles consisted of about 111,000
words total.

2. A “dry run” test was conducted

(a) A “dry run” test corpus of 25 articles consisting of about 25,000 words
was distributed.

(b) Sites participating in this dry run test ran their systems against the 25
articles. Sites were instructed that the dry run test data should not be
read by either the participants or their systems prior to this test run.

(c) Participating sites sent in the output of their systems on the dry run test
data. This output consisted of an exact copy of the test corpus except
that the participating N.E. system would insert SGML markings into
the text to bracket the named entities which it identified. Examples of
this marking can be found on page 2 and appendix B.

(d) System administrators scored every system’s output against a master
key using an automated scoring program.

3. A revised training corpus was distributed which had various minor tagging
errors corrected.

4. The formal run evaluation was held. This evaluation followed the same for-
mat as the dry run except that it was conducted on 100 articles and the
subject matter shifted from aviation disasters to missile and rocket launches.
This shift in test domain was not communicated to the participants before-
hand and had some significant implications for system performance. An
example of MENE’s output on one of these formal run articles can be found
in appendix B.

Note an important caveat here. Systems were allowed to supplement the official
training data of steps 1 and 3 with data which they had tagged themselves or ac-
quired from other sites. We trained the final MENE system on 250 supplementary
articles tagged by NYU, BBN [37], and the conference organizers in addition to
the 100 official articles for a total of 350 articles (321,000 words) of training data.

Individual named entities were scored based on whether they had the correct
start and end points (i.e. were any words left out of the name?) and whether

correct

REC = - — (1.1)
correct + tncorrect + missing
t
PRE = T : (1.2)
correct + incorrect + spurious
2-PRE - REC
F = 1.3
PRE + REC (1.3)

Figure 1.1: F-measure formula

they identified the entity correctly (i.e. “person” vs. “organization”). These were
called “text” and “type” factors, respectively. Note that the text of a given tag
could be correct while the type could be incorrect. The reverse is also possible,
such as when a tag has an incorrect start or end point but is correctly labeled
for the words which it does cover. Hence each tag had the potential to be scored
“correct” twice, once for tag and once for type.

System scores for each test were measured in terms of precision, recall, and “F-
measure” which were computed as follows [11]. First, given a tagging by an N.E.
system (a “response”) and an answer key which has the correct taggings, define
the quantities “correct”, “incorrect”, “missing”, and “spurious” as the number of
instances of the quantities defined in table 1.1.

correct response equals key

incorrect | response not equal to key

missing | key is tagged, response is untagged
spurious | response is tagged, key is untagged

Table 1.1: Definitions used in F-measure computation

These quantities are then used to compute precision, recall, and F-measure as
shown in figure 1.1.

At the MUC-6 and MUC-7 conference, systems were judged based on their
F-measures. Consequently, this is the score which we will be using in this work to
judge the quality of our named entity systems.

Chapter 2

Prior Work in Named Entity
Recognition

The MENE system uses a very flexible, maximum entropy approach to named
entity recognition. This chapter will look at systems from NYU, BBN, and other
institutions which take different approaches to the problem. We will also look at
a system from the University of Edinburgh, which, along with our MENE system,
was the first to make use of maximum entropy in named entity recognition.

2.1 The Handcrafted Approach

The majority of the systems participating in MUC-7 used what could broadly be
described as a “handcrafted approach”. By this we mean that these are systems
which are built by hand and rely heavily on the intuition of their human designers.

NYU’s “Proteus” named entity system [25] typifies this approach to the prob-
lem. This system, which was NYU’s entrant in the MUC-6 N.E. evaluation, is
written in Lisp and is primarily composed of a large number of context-sensitive
reduction rules. These rules are mostly very intuitive, the sorts of rules which
immediately leap to mind when one thinks about how an N.E. system might be
built. For instance, below we have a few such rules from Proteus with examples
in which they are right and wrong.

e Title Capitalized_ Word = Title Person_name

— Correct: Mr. Jones, Gen. Schwarzkopf

— Incorrect: Mrs. Field’s Cookies (A corporation), Mr. Ten-Percent (nick-
name for a corrupt third-world official)

e Month_name number_less_than_32 = Date

— Correct: February 28, July 15
— Incorrect: Long March 3 (a Chinese Rocket)

e from Date to Date =— Date

— Correct: from August 3 to August 9, 1997

— Incorrect: We moved the conference from April to June to allow more
time for preparation (April and June should be tagged separately, not
tagged as the single date “from April to June”).

While some of the examples which cause these rules to fail might seem far-
fetched, the “Long March 3” example did appear in the MUC-7 formal evaluation
corpus (there are two instances of “Long March” in the walk-through article). In
fact, for almost any named-entity rule there will be numerous exceptions. It is
generally impossible, given the usual time constraints, even to code for every ex-
ception which one can think of, leaving aside those exceptions which don’t become
apparent until one has run a test.

In addition, every different type of document will have its own idiosyncrasies.
For instance, in the New York Times articles which made up our test and train-
ing corpora, the beginning of the main body of each article tended to be very
stereotyped, such as this excerpt from the formal run:

Bethesda, Maryland, Feb. 15 (Bloomberg) — Comsat Corp. and the
U.S. government proposed a restructuring of ...

A rule which recognized this pattern at the start of a paragraph would doubtless
improve the score significantly on this domain, but it is questionable whether it
would carry forward into a new domain.

Another serious issue with the handcrafted approach is that of expense. Just
getting a system up and running requires several person-months of time from
a programmer with significant experience in computational linguistics—a scarce
commodity. This time is largely wasted if we want to then port the system to a
new language or domain.

There is also a serious question of consistency and reproducibility of results. At
the MUC-7 conference, the second-ranked named entity system, from IsoQuest [29],
got an F-measure of 91.6, while the lowest-ranked handcoded N.E. system from
an English-speaking institution (the European FACILE Consortium) got F=81.91
[6]. Interestingly, the IsoQuest and the FACILE systems both seem somewhat
similar. Both rely on handcoded rules. Both make use of databases of common
named entities. Both also allow different weights to be assigned to the rules so that
conflicts between rules predicting different entities can be resolved by choosing the
rules which have the greatest weight.

The major difference between the two systems seems to be that IsoQuest’s has
had substantially more person-months invested in it. FACILE states that they
only invested one person-month in developing and testing the linguistic resources
for MUC-7 as opposed to developing the underlying software. IsoQuest states that
they, too, devoted only about one month to customizing their system for MUC-7,
but they were building their system on top of their basic commercial system. Con-
sequently, 90% of the patterns in the MUC-7 entry came from their commercial
system. Since they say that the commercial system has been under development
for about two years and has been licensed to over 30 clients, one would expect that
its basic patterns are quite good. Furthermore, they have built a slick GUI devel-
opment environment, which probably further leverages their development efforts.

In sum, if one is smart enough and works hard enough, it is possible to build
a strong named entity system using conventional handcoded techniques. However,
these systems will still have a number of drawbacks

1. They will be expensive, since they will rely on the expertise of trained com-
putational linguists.

2. They will have to be manually adapted to new domains

3. Their rules and lexicons must be completely rewritten when they are ported
to new languages

4. Performance will be highly sensitive to the computational linguist’s skill in
writing the named entity patterns and to the amount of labor devoted to the
task.

On the other hand, there are certain classes of patterns which are difficult to
capture except through the use of regular expressions. For instance, the hypotheti-
cal pattern [person_name, “the” adjective* “CEO of” organization| which correctly
covers a phrase like “Fred Smith, the young dynamic CEO of XYZ Enterprises”
is a pattern which would be difficult for an automated system to learn because of
the presence of the sequence of zero or more adjectives. As we will discuss later
on, our official entry in the MUC-7 evaluation tried to combine the best of both
worlds by allowing the MENE system to look at the output of the Proteus system
as one of its inputs.

2.2 Automated Approaches: Training Data

It is clear that to answer these objections to the handcoded systems one must
attempt to build a system which will in some way automatically train itself, thereby
cutting the slow and expensive computational linguist out of the development loop.

There are, however, a large number of ways of building such a system, so we will
be looking at three of them in turn, starting with Sekine’s decision-tree based
approach [48].

Like all of the automated methods which we will be discussing in this chapter,
the decision-tree method takes as its starting point a body of text from the target
domain which has been been human-annotated with all the “correct” named en-
tities. This training text is in essentially the same form as the output which the
systems are supposed to generate. An example of this marking was shown on page
2.

Clearly the creation of large amounts of training text is a burden which is not
placed on the handcrafted systems. On the other hand, this work does not require
the quantity of labor which the handcrafted systems require. This author has
received reports that 100 articles (roughly 100,000 words) of text can be tagged in
between one [48] and three [49] person-days. This compares with the person-month
required to code the rules of even the poorest-performing named entity system.

Furthermore, text-tagging does not require the use of highly-trained computa-
tional linguists. BBN [37] made use of a team of undergraduates to tag 700,000
words of data for their system. A high rate of accuracy can be maintained by hav-
ing two different annotators tag each piece of text and then using a third annotator
to resolve any disputes.

One final point to make on training data is that even a hand-crafted system
typically needs at least a small annotated corpus for testing purposes. This data
is used to test the system and to prime the intuition of the system designer.

2.3 Automated Approaches: Decision Trees

Before looking at the decision-tree method in detail, we first have to look at some
general characteristics of how one can abstract the problem of named entity recog-
nition into a mathematically tractable form.

Given a tokenization of a test corpus and a set of n (for MUC-7, n = 7) named
entity categories, the problem of named entity recognition can be reduced to the
problem of assigning one of 4n + 1 tags to each token. For any particular N.E.
category z from the set of n categories, we could be in one of 4 states: x_start,
x_continue, x_end, and x_unique. In addition, a token could be tagged as “other” to
indicate that it is not part of a named entity. For instance, we would tag the phrase
[Jerry Lee Lewis flew to Paris| as [person_start, person_continue, person_end, other,
other, location_unique].

A decision tree can be considered to be composed of three elements [31]:

e Future: The possible outputs of the decision tree model. For instance, in our
case the 29 different tags described above form the space of futures.

10

What is word n-17
/\
/ \
san / \bill
/ \

ol
w
=]
=
o

ct

is word n-27
\
\
\
chairman with
/ | \
/ president \
/ | \
/ | \
P(gates|chairman,bill) = 0.47 I Ask more questions
P(archer|chairman,bill)= 0.28 |
|
P(clinton|president,bill) = 0.95

P(franciscolsan) =
P(diego|san)
P(jose|san)
P(salvador|san)

1 |
O O O O N
o O =
O
~
~

g
~

Figure 2.1: Decision Tree Example

e History: The information available to the model. In Sekine’s decision tree
model, this was information derivable from the previous, current, and fol-
lowing word, although in principal, there is no reason why the window could
not have been widened.

e Questions: This is what a decision tree is all about. The objective of the
decision tree growing algorithm is to find the best sequence of questions to
ask about the history to determine the future. Note that in determining this
sequence of questions, the choice of the mth question to ask is determined
by the answers to the previous m — 1 questions.

Once built, a decision tree is very easy to use. For instance, consider a language
model which attempts to determine the next word in the text given a “history”
consisting of the two previous words. A decision tree implementation might look
like figure 2.1.

Once we have answered the questions and worked our way from the “root” to
the “leaves” (terms which have the same meaning in decision trees as they do in
the trees of algorithmic computer science), we take the probability distribution

11

stored at the leaf node as defining the function P(v;|v; 2v; 1)

While it should be clear from the above that decision trees offer the possibility of
building a language model (or a named entity tagger) which is potentially efficient
in the use of both time and space at run-time, the question we are left with is how
these trees are to be built.

The basic idea is that we seek to build a tree which at every point asks the
question W which reduces uncertainty about the set of futures, F, by the greatest
amount ! . Uncertainty is measured here as conditional entropy:

W = {All possible answers to question W} (2.1)
H(F|W) = =3 P(q) > P(flg)log P(flq) (2.2)
geEWw feF

The problem with the method as we have sketched it thus far is that in looking for
the best question at any given tree node, we will tend to choose those questions
W for which |W] is large since in general those questions will lead to the lowest
value of H(F|W). But while our metric will tend to make us favor large values
of [W|, from a computational point of view we want to avoid unnecessary data
fragmentation and so we would prefer smaller |W|.

The solution to this is to ask only binary questions, i.e. questions whose answer
can only be “yes” or “no”. This makes the problem somewhat similar to the
old television game show “What’s My Line”, in which contestants attempted to
determine the profession of a guest by asking a series of yes/no questions. In
playing this game, just like in seeking to minimize H(F'|W), we are basically
looking for questions which will produce a roughly even split between yes and no
answers and in which the universe of professions for the two answers are markedly
different. Hence a question like “Are you a plumber?” 1is a poor choice for a
first question because while P(plumber|yes) = 1, P(yes) is low. On the other
hand, a question like “Do you use Colgate toothpaste?” divides the population
roughly evenly, but it probably would not reduce uncertainty about the guest’s
profession. A better question to start with might be “Do you have any post-
secondary education?”, a query which does a fairly good job on both counts.

Growing a tree by selecting the questions which lead to the greatest reduction
in conditional entropy is a well-known technique, and, in fact, Sekine was able to
use an off-the-shelf toolkit [39] to grow his decision trees. The critical question,
then, is in supplying the tree with a sufficiently rich history so that it can ask a
series of informative questions which can reduce the uncertainty about the space of
futures. We will now examine the specific information used by Sekine’s Japanese
named entity tagger.

!Note that in this section a capital letter (F) refers to a variable in the usual mathematical
sense, a lower-case letter (f) refers to an instantiation of the variable, and a calligraphic variable
(F) is the set of all instantiations which the variable can take.

12

Named entity tagging in Japanese poses a particular problem in that the lan-
guage has no spacing between individual words. In order to get around this problem
and to focus on N.E. rather than on word segmentation, Sekine used an off-the-shelf
segmenter called “Juman” [34]. In addition to doing word segmentation, Juman
also returns the character type (i.e. Katakana, Kanji, etc.) of every word and tries
to determine the word’s part-of-speech.

The other resource Sekine provided to his system was a set of dictionaries
(word-lists), which gave common words which could be expected to appear as the
prefix or suffix of a named entity as well as a list of words which could be the N.E.
itself. For instance, the suffix “san” would appear in the person-suffix dictionary
because it is indicative of a name appearing in the prior word (e.g. “Sekine-san”).
Likewise, a Japanese person name like “Sekine” would go in the person dictionary.

The approach resulted in some significant successes. The system turned in
competitive results at MET-2 [46] (the Japanese version of MUC-7) and it was
highly portable. In particular, it was simple to add a new type of named entity
(“position”, i.e. “President”, “Professor”), and the system ported easily between
an airline disaster domain and a business management succession domain.

One drawback to the approach, though, became apparent when the system was
compared side-by-side with MENE on the MET-2 corpus. We found that when
the two systems were trained on the same inputs (i.e. the “features” of the maxi-
mum entropy system had access to the same information as the “questions” of the
decision tree system), they got similar results. However, one piece of information
which was notably absent from the decision-tree system was the words themselves
(as opposed to information about the words’ part of speech, character-type, pres-
ence in various dictionaries, etc.). Integrating lexical information into this sort
of decision-tree is not a trivial task since if one has a vocabulary of size n and
one allows n questions of the form “Is the current word zyz?”, then one is likely
to harm the model by causing excessive fragmentation of the training corpus. In
other words, each leaf node would have too few events to properly estimate the
probabilities for the different named entities, and accuracy would suffer. Some un-
published experiments confirmed that lexical information could not be integrated
into the model by such a naive approach [45]. There are more sophisticated ways
of adding lexical information to a decision tree model [31], so it remains to be seen
whether a decision tree N.E. system could get a performance boost out of this type
of information.

As we will discuss later, lexical information can be added to MENE using almost
trivial methods. When we added lexical information to the Japanese MENE sys-
tem, we saw that the F-measure increased by over 3.8 F-measures, an improvement
which caused it to substantially outperform the decision tree system on MET-2
data, as discussed in section 8.6.

13

2.4 Automated Approaches: Hidden Markov
Models

A second automated approach which has been advanced recently is the use of Hid-
den Markov Models at BBN in their Identifinder system [5] [37]. BBN’s essential
idea is to build a separate bigram language model for each name category. In
addition, they build a model which predicts the next name category based on the
previous word and previous name category.

Thus, a simplified version of their system turns on the following two equations:

P(NC|NC_,,w_;) = C(JZ(CJ;'\; C],V_ i‘;’_lf)‘l) (2.3)
c((w,), (w, f)-1, NC)

c({w, f)_1, NC)

Some definitions of terms used in BBN’s equations are as follows:

P({w, f)[{w, f)-1, NC) (2.4)

NC = Current name class (2.5)
NC_, = Name class of the word x words back (2.6)
(W) = g](;ugcaionfhz/lgf.c Olrgu Snumber of times event W appears in (2.7)

w = A word (2.8)
f = A feature (2.9)

Note that features in the BBN system, unlike features in maximum entropy, are
attributes of words. For instance, a word can have the feature that it is capitalized,
that it is at the start of a sentence, or that it is a member of a particular word list
(such as a list of corporate designators).

The idea behind these equations is that we have a model predicting the next
name class given the previous name class and previous word and a model predicting
the next word-feature pair given the previous word-feature pair and the current
name class. We then do a Viterbi search to find the sequence of name classes
which assigns the highest probability to the test corpus. This name class sequence
implies a tagging of the test corpus.

As an example, given appropriate training data, we could expect the following
inequality to hold:

P((andersen,capitalized)|(arthur,capitalized) _;, organization name) >

P((andersen,capitalized) |{arthur,capitalized) _;, person_name)

14

Consequently, we could expect that the Viterbi search routine would choose
“organization name” for this sequence rather than “person name”.

BBN’s system had considerable success at MUC-7. They ended up with an
F-measure of 90.44 and a third-of-twelve ranking, which exceeded MENE’s 88.80
F-measure and fourth-place ranking. We will compare the system results in further
detail in section 7.5, but for the moment, we would like to point out what we
perceive to be a shortcoming of the HMM method relative to our maximum entropy
approach.

We would argue that Identifinder suffers from the fact that it makes heavy use
of “back-off” in its modeling. Specifically, in the event that it has never seen the
exact combination of words and features described by equation 2.4, Identifinder
backs off to a sequence of less specific models in the following sequence:

P((w, f)INC) (2.10)
P(w|NC) - P(fINC) (2.11)

1 1
[Vl " number of word features (2.12)

Note that any backoff strategy requires a method of splitting the probability
“mass” between each level of backoff. In [5], BBN gives the formula which they
use to do this. Also note that in addition to the above backoff sequence, there is a
separate backoff sequence which is followed when an unknown word is encountered
either as the current word, as the previous word, or as both.

All of this backing off exacts a certain price. Firstly, there is a question of the
complexity of the model as more layers of backing off are introduced. Secondly, the
issue of how the different layers of backoff are weighted against each other becomes
crucial. While BBN’s is a reasonable approach, the choice of method will have a
major impact on the outcome.

Most importantly, though, this sort of model is vulnerable to the same sorts
of data fragmentation issues which afflict the decision tree model. One needs
to be careful not to introduce too many features into the model because that
would increase the frequency with which the system would have to back off. One
should also note that Identifinder only allows one feature to be active at a time.
Consequently, the system would have a difficult time modeling a situation where
a word was, for instance, both capitalized and on a list of names of months of the
year, a situation which might help to distinguish words like “march” and “may”.

Granted, these criticisms must be taken with a grain of salt since we have
not yet demonstrated that MENE can outperform an HMM system when the two
systems are placed on an equal footing. However, we feel that the fact that the
maximum entropy approach doesn’t suffer from these problems points to the long-
term potential of the approach.

15

2.5 A Hybrid Approach: LTG/University of Ed-
inburgh

The other interesting statistical system entered in the MUC-7 evaluation was,
like MENE, a hybrid statistical-handcoded system which made use of maximum
entropy [35]. The key characteristic of this system is that the processing is done
in stages. In the initial phase, the text passes through some “sure-fire” handcoded
regular expression rules like those described in the Proteus system. These are rules
which were deemed to have a very high probability of being correct (and which,
in fact, performed with 98% precision on the formal evaluation). One example of
these is the following:

e Capitalized_word™ is a? JJ* PROF

— Example: Yuri Gromov is a former director
— Definitions:

* “+” means “one or more”

Wk

* means “zero or more”

x “?7” means “zero or one”
x “JJ” means adjective
x “PROF” is a profession (director, manager, analyst, etc.)

Since these sure-fire rules have only 42% recall, some additional stages are
necessary. In the next stage, a set of weaker rules are passed to a maximum
entropy model. These rules take into account information such as whether or not
a word was identified as an N.E. elsewhere in the text by one of the sure-fire rules,
case information, the position of the word in the sentence, etc. Although the LTG
paper gives very little information about their M.E. model, one imagines that each
of the above might be a different feature which would be given a weight by a
maximum entropy training procedure similar to the MENE procedure described
in section 4.2.

Following this maximum entropy phase, there is another stage in which hand-
coded rules are used. These rules have more relaxed criteria than the “sure-fire”
rules and consequently they have lower precision. These rules make extensive
use of lists of known locations, organizations, and person-names. There follows
another maximum entropy stage similar to the one described above and finally
another M.E. model which handles names found in the document headers (i.e. in
headlines).

Unfortunately, comparisons between our work and that of LTG are difficult
since over half of the LTG system’s recall came from the two non-statistical phases

16

of their five-stage process. The LTG system demonstrated superior performance
on the formal run relative to the MENE-Proteus hybrid system (93.39 vs 88.80)
and, in fact, had the highest score overall at MUC-7, but it isn’t clear whether their
advantage came from superior handcoded rules or superior statistical techniques,
because their system is not as easily broken down into separate components as
is MENE-Proteus. It is also possible that tighter system integration between the
statistical and handcoded components was responsible for some of LTG’s relative
advantage, but note that MENE-Proteus appears to have an advantage over LTG
in terms of portability. As we will discuss later, we were able to easily port MENE
to Japanese, and we expect that it could be easily combined with a pre-existing
Japanese handcoded system, but it isn’t clear that this could be done with the
LTG system. Nevertheless, one avenue for future research is to look at tighter
multi-system integration methods which wouldn’t compromise MENE’s essential
portability.

17

